Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).
نویسندگان
چکیده
The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.
منابع مشابه
Accelerated Computational Analysis of Metal−Organic Frameworks for Oxidation Catalysis
High-spin iron(IV)−oxo compounds are known to activate strong C−H bonds. Stabilizing the high-spin S = 2 electronic configuration is difficult in molecular species for homogeneous catalysis, but recent experimental and computational results suggest this can be achieved in the metal−organic framework Fe2(dobdc) (dobdc 4− = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogues...
متن کاملMillion-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O)
Reaction of FeCl2 and H4DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe2(DSBDC), an analogue of M2(DOBDC) (MOF-74, DOBDC(4-) = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe2(DSBDC) and Fe2(DOBDC) are ∼6 orders of magnitude higher than those of the Mn(2+) analogues, Mn2(DEBDC) (E = O, S). Because the metals are of t...
متن کاملImmobilization of Acidithiobacillus Ferrooxidans on Monolithic Packing for Biooxidation of Ferrous Iron
The oxidation of ferrous iron (Fe2+) in solution using Acidithiobacillus ferrooxidans has industrial applications exclusively in the regeneration of ferric iron (Fe3+) as an oxidizing agent for the removal of hydrogen sulfide from waste gases, desulfurization of coal, leaching of non-ferrous metallic sulfides and treatment of acid mine drainage. The aim of this investigation was to increase the...
متن کاملCombined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes.
The hydroxylation of aromatic compounds by mononuclear nonheme iron(IV)-oxo complexes, [FeIV(Bn-tpen)(O)]2+ (Bn-tpen=N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) and [FeIV(N4Py)(O)]2+ (N4Py=N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), has been investigated by a combined experimental and theoretical approach. In the experimental work, we have performed kinetic studies of t...
متن کاملSingle-ion magnetic anisotropy and isotropic magnetic couplings in the metal-organic framework Fe2(dobdc).
The metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate), often referred to as Fe-MOF-74, possesses many interesting properties such as a high selectivity in olefin/paraffin separations. This compound contains open-shell Fe(II) ions with open coordination sites which may have large single-ion magnetic anisotropies, as well as isotropic couplings between the near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 17 شماره
صفحات -
تاریخ انتشار 2015